find L ^ - 1 * [(6 ^ 2 + 25 - 4)/((s - 5)(s ^ 2 + 9))]
You asked:
Evaluate the expression: \({L}^{-1} \cdot \frac{{6}^{2} + 25 - 4}{\left(s - 5\right) \cdot \left({s}^{2} + 9\right)}\)
MathBot Answer:
Evaluated
\(\displaystyle {L}^{-1} \cdot \frac{{6}^{2} + 25 - 4}{\left(s - 5\right) \cdot \left({s}^{2} + 9\right)} = \frac{57}{L \left(s^{2} + 9\right) \left(s - 5\right)} \)
Expanded
\[{L}^{-1} \cdot \frac{{6}^{2} + 25 - 4}{\left(s - 5\right) \cdot \left({s}^{2} + 9\right)} = \frac{57}{s^{3} L - 5 s^{2} L + 9 L s - 45 L}\]