5/(8aˆ2-18bˆ2)+1/(2aˆ2+3ab)-1/(4ab-6bˆ2)
You asked:
Evaluate the expression: \(\frac{5}{8 {a}^{2} - 18 {b}^{2}} + \frac{1}{2 {a}^{2} + 3 a b} - \frac{1}{4 a b - 6 {b}^{2}}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{5}{8 {a}^{2} - 18 {b}^{2}} + \frac{1}{2 {a}^{2} + 3 a b} - \frac{1}{4 a b - 6 {b}^{2}} = - \frac{1}{4 a b - 6 b^{2}} + \frac{5}{8 a^{2} - 18 b^{2}} + \frac{1}{2 a^{2} + 3 a b} \)
Expanded
\[\frac{5}{8 {a}^{2} - 18 {b}^{2}} + \frac{1}{2 {a}^{2} + 3 a b} - \frac{1}{4 a b - 6 {b}^{2}} = - \frac{1}{4 a b - 6 b^{2}} + \frac{5}{8 a^{2} - 18 b^{2}} + \frac{1}{2 a^{2} + 3 a b}\]
Factored
\[\frac{5}{8 {a}^{2} - 18 {b}^{2}} + \frac{1}{2 {a}^{2} + 3 a b} - \frac{1}{4 a b - 6 {b}^{2}} = - \frac{a^{2} - 3 a b + 3 b^{2}}{a b \left(2 a - 3 b\right) \left(2 a + 3 b\right)}\]