(1+3–√3)3−3(1+3–√3)2+2(1+3–√3)−1

asked by guest
on Nov 28, 2024 at 12:49 pm



You asked:

Evaluate the expression: (1+33)33(1+33)2+2(1+33)1\left(1 + 3 - \sqrt{3}\right) \cdot 3 - 3 \left(1 + 3 - \sqrt{3}\right) \cdot 2 + 2 \left(1 + 3 - \sqrt{3}\right) - 1

MathBot Answer:

(1+33)33(1+33)2+2(1+33)1=5+33.26794919243112270647255365849413\left(1 + 3 - \sqrt{3}\right) \cdot 3 - 3 \left(1 + 3 - \sqrt{3}\right) \cdot 2 + 2 \left(1 + 3 - \sqrt{3}\right) - 1 = -5 + \sqrt{3} \approx -3.26794919243112270647255365849413


(1+33)33(1+33)2+2(1+33)1=(1+33)33(1+33)2+2(1+33)1=(43)33(1+33)2+2(1+33)1=(1233)3(1+33)2+2(1+33)1=(1233)3(43)2+2(1+33)1=(1233)(1233)2+2(1+33)1=(1233)(2463)+2(1+33)1=(1233)(2463)+2(43)1=(1233)(2463)+(823)1=(12+33)+(823)1=(4+3)1=5+3\begin{aligned}\left(1 + 3 - \sqrt{3}\right) \cdot 3 - 3 \left(1 + 3 - \sqrt{3}\right) \cdot 2 + 2 \left(1 + 3 - \sqrt{3}\right) - 1&=\left(1 + 3 - \sqrt{3}\right) \cdot 3 - 3 \cdot \left(1 + 3 - \sqrt{3}\right) \cdot 2 + 2 \cdot \left(1 + 3 - \sqrt{3}\right) - 1\\&=\left(4 - \sqrt{3}\right) \cdot 3 - 3 \cdot \left(1 + 3 - \sqrt{3}\right) \cdot 2 + 2 \cdot \left(1 + 3 - \sqrt{3}\right) - 1\\&=\left(12 - 3 \cdot \sqrt{3}\right) - 3 \cdot \left(1 + 3 - \sqrt{3}\right) \cdot 2 + 2 \cdot \left(1 + 3 - \sqrt{3}\right) - 1\\&=\left(12 - 3 \cdot \sqrt{3}\right) - 3 \cdot \left(4 - \sqrt{3}\right) \cdot 2 + 2 \cdot \left(1 + 3 - \sqrt{3}\right) - 1\\&=\left(12 - 3 \cdot \sqrt{3}\right) - \left(12 - 3 \cdot \sqrt{3}\right) \cdot 2 + 2 \cdot \left(1 + 3 - \sqrt{3}\right) - 1\\&=\left(12 - 3 \cdot \sqrt{3}\right) - \left(24 - 6 \cdot \sqrt{3}\right) + 2 \cdot \left(1 + 3 - \sqrt{3}\right) - 1\\&=\left(12 - 3 \cdot \sqrt{3}\right) - \left(24 - 6 \cdot \sqrt{3}\right) + 2 \cdot \left(4 - \sqrt{3}\right) - 1\\&=\left(12 - 3 \cdot \sqrt{3}\right) - \left(24 - 6 \cdot \sqrt{3}\right) + \left(8 - 2 \cdot \sqrt{3}\right) - 1\\&=\left(-12 + 3 \cdot \sqrt{3}\right) + \left(8 - 2 \cdot \sqrt{3}\right) - 1\\&=\left(-4 + \sqrt{3}\right) - 1\\&=-5 + \sqrt{3}\end{aligned}