(1+3–√3)3−3(1+3–√3)2+2(1+3–√3)−1
asked by guest
on Nov 28, 2024 at 12:49 pm
You asked:
Evaluate the expression:
(1+3−3)⋅3−3(1+3−3)⋅2+2(1+3−3)−1
MathBot Answer:
(1+3−3)⋅3−3(1+3−3)⋅2+2(1+3−3)−1=−5+3≈−3.26794919243112270647255365849413
(1+3−3)⋅3−3(1+3−3)⋅2+2(1+3−3)−1=(1+3−3)⋅3−3⋅(1+3−3)⋅2+2⋅(1+3−3)−1=(4−3)⋅3−3⋅(1+3−3)⋅2+2⋅(1+3−3)−1=(12−3⋅3)−3⋅(1+3−3)⋅2+2⋅(1+3−3)−1=(12−3⋅3)−3⋅(4−3)⋅2+2⋅(1+3−3)−1=(12−3⋅3)−(12−3⋅3)⋅2+2⋅(1+3−3)−1=(12−3⋅3)−(24−6⋅3)+2⋅(1+3−3)−1=(12−3⋅3)−(24−6⋅3)+2⋅(4−3)−1=(12−3⋅3)−(24−6⋅3)+(8−2⋅3)−1=(−12+3⋅3)+(8−2⋅3)−1=(−4+3)−1=−5+3