(x^2-x-12) /(x^2+5x+6)
You asked:
Evaluate the expression: \(\frac{{x}^{2} - x - 12}{{x}^{2} + 5 x + 6}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{{x}^{2} - x - 12}{{x}^{2} + 5 x + 6} = \frac{x^{2} - x - 12}{x^{2} + 5 x + 6} \)
Expanded
\[\frac{{x}^{2} - x - 12}{{x}^{2} + 5 x + 6} = \frac{x^{2}}{x^{2} + 5 x + 6} - \frac{x}{x^{2} + 5 x + 6} - \frac{12}{x^{2} + 5 x + 6}\]
Factored
\[\frac{{x}^{2} - x - 12}{{x}^{2} + 5 x + 6} = \frac{x - 4}{x + 2}\]