(x^2-x-12) /(x^2+5x+6)

asked by guest
on Jan 12, 2025 at 6:50 pm



You asked:

Evaluate the expression: \(\frac{{x}^{2} - x - 12}{{x}^{2} + 5 x + 6}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{{x}^{2} - x - 12}{{x}^{2} + 5 x + 6} = \frac{x^{2} - x - 12}{x^{2} + 5 x + 6} \)


Expanded

\[\frac{{x}^{2} - x - 12}{{x}^{2} + 5 x + 6} = \frac{x^{2}}{x^{2} + 5 x + 6} - \frac{x}{x^{2} + 5 x + 6} - \frac{12}{x^{2} + 5 x + 6}\]


Factored

\[\frac{{x}^{2} - x - 12}{{x}^{2} + 5 x + 6} = \frac{x - 4}{x + 2}\]