sin(30)/sin(45)=[299792458/(2.997*10^8)]/[299792458/(x*10^8)]
solve for x
You asked:
Solve the equation \[\frac{\sin\left( 30 \right)}{\sin\left( 45 \right)} = \frac{\frac{299792458}{2.997 \cdot {10}^{8}}}{\frac{299792458}{x \cdot {10}^{8}}}\] for the unknown \(x\).
MathBot Answer:
The solution is: \[x = \frac{2997 \sin{\left(30 \right)}}{1000 \sin{\left(45 \right)}} \approx -3.4799841\]
\[\begin{aligned}\frac{\sin{\left(30 \right)}}{\sin{\left(45 \right)}} &= \frac{1000}{2997} x\\- \frac{1000}{2997} x &= - \frac{\sin{\left(30 \right)}}{\sin{\left(45 \right)}}\\x &= \frac{2997 \sin{\left(30 \right)}}{1000 \sin{\left(45 \right)}}\end{aligned}\]