268329x times 827492x

x=982943

asked by guest
on Jan 20, 2025 at 7:51 am



You asked:

Solve the equation 268329x827492xx=982943268329 x \cdot 827492 x \cdot x = 982943 for the variable xx.

MathBot Answer:

The solutions are given by the formula: x=60576081852272711284247058543cos(2πk3)111020050434+60576081852272711284247058543sin(2πk3)111020050434ix = \frac{\sqrt[3]{6057608185227271128424705854} \cos{\left(\frac{2 \pi k}{3} \right)}}{111020050434} + \frac{\sqrt[3]{6057608185227271128424705854} \sin{\left(\frac{2 \pi k}{3} \right)}}{111020050434} i where kk is an integer in 0k<30 \le k < 3.

There is 11 real solution.

There are 22 solutions with nonzero imaginary part.


Real solutions: x=605760818522727112842470585431110200504340.016419716\begin{aligned}x &= \frac{\sqrt[3]{6057608185227271128424705854}}{111020050434} \\&\approx 0.016419716\end{aligned}


Solutions with nonzero imaginary part: x=60576081852272711284247058543222040100868+20192027284090903761415686183356i2220401008680.008209858+0.014219891ix=6057608185227271128424705854322204010086820192027284090903761415686183356i2220401008680.0082098580.014219891i\begin{aligned}x &= - \frac{\sqrt[3]{6057608185227271128424705854}}{222040100868} + \frac{\sqrt[3]{2019202728409090376141568618} \cdot 3^{\frac{5}{6}} i}{222040100868} \\&\approx -0.008209858 + 0.014219891 i\\x &= - \frac{\sqrt[3]{6057608185227271128424705854}}{222040100868} - \frac{\sqrt[3]{2019202728409090376141568618} \cdot 3^{\frac{5}{6}} i}{222040100868} \\&\approx -0.008209858 -0.014219891 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.