simplify (((A-6.48)÷(0.00256))+((A-7.85)÷(0.00388))+((A-7.97)÷(0.00964)))=850
You asked:
MathBot Answer:
Simplified:
\[ \frac{A - 6.48}{0.00256} + \frac{A - 7.85}{0.00388} + \frac{A - 7.97}{0.00964} = 850 = \frac{140653125 A}{187016} - \frac{503186125}{93508} = 850 \]
$$\begin{aligned}\frac{\left(A - \left(6 + 48 \cdot \frac{1}{100}\right)\right)}{256 \cdot \frac{1}{100000}} + \frac{\left(A - \left(7 + 85 \cdot \frac{1}{100}\right)\right)}{388 \cdot \frac{1}{100000}} + \frac{\left(A - \left(7 + 97 \cdot \frac{1}{100}\right)\right)}{964 \cdot \frac{1}{100000}} = 850\\\frac{3125 \left(A - \left(6 + \frac{12}{25}\right)\right)}{8} + \frac{8450000 A}{23377} - \frac{66623500}{23377} = 850\\\frac{3125 \left(A - \frac{162}{25}\right)}{8} + \frac{8450000 A}{23377} - \frac{66623500}{23377} = 850\\\frac{8450000 A}{23377} + \frac{3125 A}{8} - \frac{10125}{4} - \frac{66623500}{23377} = 850\\\frac{140653125 A}{187016} - \frac{503186125}{93508} = 850\\A = \frac{46613434}{5626125}\end{aligned}$$
Expanded:
\[ \frac{A - 6.48}{0.00256} + \frac{A - 7.85}{0.00388} + \frac{A - 7.97}{0.00964} = 850 = \frac{140653125 A}{187016} - \frac{582667925}{93508} \]