(A→B)∧(B↔C)∧(A⊕C)

asked by guest
on Jan 31, 2025 at 2:47 pm



MathBot Answer:

Logic Expression
Symbol: (AB)(BC)(AC)\left(A \rightarrow B\right) \wedge \left(B \leftrightarrow C\right) \wedge \left(A \oplus C\right)
Text: (A implies B) and (B if and only if C) and (A xor C)\left(A \text{ implies } B\right) \text{ and } \left(B \text{ if and only if } C\right) \text{ and } \left(A \text{ xor } C\right)


Classification contingency


Truth Table

Legend

AABBCCABA \rightarrow BBCB \leftrightarrow CACA \oplus C(AB)(BC)(AC)\left(A \rightarrow B\right) \wedge \left(B \leftrightarrow C\right) \wedge \left(A \oplus C\right)
1111100
1101010
1010000
1000110
0111111
0101000
0011010
0001100
T/F

Simplification(AB)(BC)(AC)(¬AB)(BC)(AC)Conditional Equivalence(¬AB)(B¬C)(¬BC)(AC)Biconditional Equivalence(¬AB)(B¬C)(¬BC)(AC)(¬A¬C)XOR(¬AB)(B¬C)(AC)(¬BC)(¬A¬C)Commutative Law(B(¬A¬C))(AC)(¬BC)(¬A¬C)Distributive Law(B¬(AC))(AC)(¬BC)(¬A¬C)De Morgan’s LawB(AC)(¬BC)(¬A¬C)Redundancy Law (2)B(¬BC)(AC)(¬A¬C)Commutative LawBC(AC)(¬A¬C)Redundancy Law (2)BC(¬A¬C)Absorption LawBC¬ARedundancy Law (2)\begin{gathered} \left(A \rightarrow B\right) \wedge \left(B \leftrightarrow C\right) \wedge \left(A \oplus C\right) & \equiv & \left(\neg A \vee B\right) \wedge \left(B \leftrightarrow C\right) \wedge \left(A \oplus C\right) & \text{Conditional Equivalence} \\ & \equiv & \left(\neg A \vee B\right) \wedge \left(B \vee \neg C\right) \wedge \left(\neg B \vee C\right) \wedge \left(A \oplus C\right) & \text{Biconditional Equivalence} \\ & \equiv & \left(\neg A \vee B\right) \wedge \left(B \vee \neg C\right) \wedge \left(\neg B \vee C\right) \wedge \left(A \vee C\right) \wedge \left(\neg A \vee \neg C\right) & \text{XOR} \\ & \equiv & \left(\neg A \vee B\right) \wedge \left(B \vee \neg C\right) \wedge \left(A \vee C\right) \wedge \left(\neg B \vee C\right) \wedge \left(\neg A \vee \neg C\right) & \text{Commutative Law} \\ & \equiv & \left(B \vee \left(\neg A \wedge \neg C\right)\right) \wedge \left(A \vee C\right) \wedge \left(\neg B \vee C\right) \wedge \left(\neg A \vee \neg C\right) & \text{Distributive Law} \\ & \equiv & \left(B \vee \neg \left(A \vee C\right)\right) \wedge \left(A \vee C\right) \wedge \left(\neg B \vee C\right) \wedge \left(\neg A \vee \neg C\right) & \text{De Morgan's Law} \\ & \equiv & B \wedge \left(A \vee C\right) \wedge \left(\neg B \vee C\right) \wedge \left(\neg A \vee \neg C\right) & \text{Redundancy Law (2)} \\ & \equiv & B \wedge \left(\neg B \vee C\right) \wedge \left(A \vee C\right) \wedge \left(\neg A \vee \neg C\right) & \text{Commutative Law} \\ & \equiv & B \wedge C \wedge \left(A \vee C\right) \wedge \left(\neg A \vee \neg C\right) & \text{Redundancy Law (2)} \\ & \equiv & B \wedge C \wedge \left(\neg A \vee \neg C\right) & \text{Absorption Law} \\ & \equiv & B \wedge C \wedge \neg A & \text{Redundancy Law (2)} \end{gathered} Note: Solution may not be as simplified as possible.


Conjunctive Normal FormBC¬AB \wedge C \wedge \neg A


Note 1: These equivalences and tautologies are used to generate the above steps.
Note 2: Two logical statements are logically equivalent if they always produce the same truth value. Consequently, p ≡ q is same as saying p ↔ q is a tautology. EquivalenceAbsorption Lawp(pq)pp(pq)pBiconditional Equivalencepq(p¬q)(¬pq)pq(pq)(¬p¬q)Biconditional SimplificationppTruepTruepp¬pFalsepFalse¬pComplement Lawp¬pFalsep¬pTrueConditional Equivalencepq¬pqConditional SimplificationppTruepTrueTruepFalse¬pp¬p¬pTrueppFalsepTrue¬pppConsensus Law(pq)(¬pr)(qr)(pq)(¬pr)(pq)(¬pr)(qr)(pq)(¬pr)De Morgan’s Law¬(pq)¬p¬q¬(pq)¬p¬qDistributive Lawp(qr)(pq)(pr)p(qr)(pq)(pr)(pq)(rs)(pr)(ps)(qr)(qs)(pq)(rs)(pr)(ps)(qr)(qs)Domination LawpTrueTruepFalseFalseDouble Negation Law¬(¬p)pIdempotent LawppppppIdentity LawpTrueppFalsepNANDpq¬(pq)Negation Law¬TrueFalse¬FalseTrueNORpq¬(pq)Negation of Biconditional Equivalence¬(pq)(pq)(¬p¬q)¬(pq)(p¬q)(¬pq)Negation of Conditional Equivalence¬(pq)p¬qRedundancy Law (1)(pq)(p¬q)p(pq)(p¬q)pRedundancy Law (2)p(¬pq)pqp(¬pq)pqXORpq(pq)(¬p¬q)pq(p¬q)(¬pq)XOR SimplificationppFalsepTrue¬pp¬pTruepFalsepXNORpq¬(pq)\begin{array}{c|c}\textbf{Equivalence} \\ \hline \text{Absorption Law} & \begin{gathered} p \wedge \left(p \vee q\right) \equiv p \\ p \vee \left(p \wedge q\right) \equiv p \end{gathered} \\ \hline \text{Biconditional Equivalence} & \begin{gathered} p \leftrightarrow q \equiv \left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right) \\ p \leftrightarrow q \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge \neg q\right) \end{gathered} \\ \hline \text{Biconditional Simplification} & \begin{gathered} p \leftrightarrow p \equiv \text{True} & p \leftrightarrow \text{True} \equiv p \\ p \leftrightarrow \neg p \equiv \text{False} & p \leftrightarrow \text{False} \equiv \neg p \end{gathered} \\ \hline \text{Complement Law} & \begin{gathered} p \wedge \neg p \equiv \text{False} \\ p \vee \neg p \equiv \text{True} \end{gathered} \\ \hline \text{Conditional Equivalence} & p \rightarrow q \equiv \neg p \vee q \\ \hline \text{Conditional Simplification} & \begin{gathered} p \rightarrow p \equiv \text{True} & p \rightarrow \text{True} \equiv \text{True} & p \rightarrow \text{False} \equiv \neg p \\ p \rightarrow \neg p \equiv \neg p & \text{True} \rightarrow p \equiv p & \text{False} \rightarrow p \equiv \text{True} \\ \neg p \rightarrow p \equiv p\end{gathered} \\ \hline \text{Consensus Law} & \begin{gathered} \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \wedge \left(q \vee r\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \\ \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \vee \left(q \wedge r\right) \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \end{gathered} \\ \hline \text{De Morgan's Law} & \begin{gathered} \neg \left(p \wedge q\right) \equiv \neg p \vee \neg q \\ \neg \left(p \vee q\right) \equiv \neg p \wedge \neg q \end{gathered} \\ \hline \text{Distributive Law} & \begin{gathered} p \wedge \left(q \vee r\right) \equiv \left(p \wedge q\right) \vee \left(p \wedge r\right) \\ p \vee \left(q \wedge r\right) \equiv \left(p \vee q\right) \wedge \left(p \vee r\right) \\ \left(p \vee q\right) \wedge \left(r \vee s\right) \equiv \left(p \wedge r\right) \vee \left(p \wedge s\right) \vee \left(q \wedge r\right) \vee \left(q \wedge s\right) \\ \left(p \wedge q\right) \vee \left(r \wedge s\right) \equiv \left(p \vee r\right) \wedge \left(p \vee s\right) \wedge \left(q \vee r\right) \wedge \left(q \vee s\right) \end{gathered} \\ \hline \text{Domination Law} & \begin{gathered} p \vee \text{True} \equiv \text{True} \\ p \wedge \text{False} \equiv \text{False} \end{gathered} \\ \hline \text{Double Negation Law} & \neg \left(\neg p\right) \equiv p \\ \hline \text{Idempotent Law} & \begin{gathered} p \wedge p \equiv p \\ p \vee p \equiv p \end{gathered} \\ \hline \text{Identity Law} & \begin{gathered} p \wedge \text{True} \equiv p \\ p \vee \text{False} \equiv p \end{gathered} \\ \hline \text{NAND} & p \uparrow q \equiv \neg \left(p \wedge q\right) \\ \hline \text{Negation Law} & \begin{gathered} \neg \text{True} \equiv \text{False} \\ \neg \text{False} \equiv \text{True} \end{gathered} \\ \hline \text{NOR} & p \downarrow q \equiv \neg \left(p \vee q\right) \\ \hline \text{Negation of Biconditional Equivalence} & \begin{gathered} \neg \left(p \leftrightarrow q\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ \neg \left(p \leftrightarrow q\right) \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{Negation of Conditional Equivalence} & \neg \left(p \rightarrow q\right) \equiv p \wedge \neg q \\ \hline \text{Redundancy Law (1)} & \begin{gathered} \left(p \vee q\right) \wedge \left(p \vee \neg q\right) \equiv p \\ \left(p \wedge q\right) \vee \left(p \wedge \neg q\right) \equiv p \end{gathered} \\ \hline \text{Redundancy Law (2)} & \begin{gathered} p \wedge \left(\neg p \vee q\right) \equiv p \wedge q \\ p \vee \left(\neg p \wedge q\right) \equiv p \vee q \end{gathered} \\ \hline \text{XOR} & \begin{gathered} p \oplus q \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ p \oplus q \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{XOR Simplification} & \begin{gathered} p \oplus p \equiv \text{False} & p \oplus \text{True} \equiv \neg p \\ p \oplus \neg p \equiv \text{True} & p \oplus \text{False} \equiv p \end{gathered} \\ \hline \text{XNOR} & p \odot q \equiv \neg \left(p \oplus q\right) \end{array} TautologyConjunctive Simplification(pq)p(pq)qContradiction¬(p¬p)Contrapositive(pq)(¬q¬p)Disjunctive Additionp(pq)q(pq)Disjunctive Syllogism((pq)¬q)p((pq)¬p)qHypothetical Syllogism((pq)(qr))(pr)Modus Ponens(p(pq))qModus Tollens(¬q(pq))¬p\begin{array}{c|c}\textbf{Tautology} \\ \hline \text{Conjunctive Simplification} & \begin{gathered} \left(p \wedge q\right) \rightarrow p \\ \left(p \wedge q\right) \rightarrow q \end{gathered} \\ \hline \text{Contradiction} & \neg \left(p \wedge \neg p\right) \\ \hline \text{Contrapositive} & \left(p \rightarrow q\right) \leftrightarrow \left(\neg q \rightarrow \neg p\right) \\ \hline \text{Disjunctive Addition} & \begin{gathered} p \rightarrow \left(p \vee q\right) \\ q \rightarrow \left(p \vee q\right) \end{gathered} \\ \hline \text{Disjunctive Syllogism} & \begin{gathered} \left(\left(p \vee q\right) \wedge \neg q\right) \rightarrow p \\ \left(\left(p \vee q\right) \wedge \neg p\right) \rightarrow q \end{gathered} \\ \hline \text{Hypothetical Syllogism} & \left(\left(p \rightarrow q\right) \wedge \left(q \rightarrow r\right)\right) \rightarrow \left(p \rightarrow r\right) \\ \hline \text{Modus Ponens} & \left(p \wedge \left(p \rightarrow q\right)\right) \rightarrow q \\ \hline \text{Modus Tollens} & \left(\neg q \wedge \left(p \rightarrow q\right)\right) \rightarrow \neg p \end{array}