expand and fully simplify
(t-2)(t+5)(t-4)
You asked:
Simplify the expression: \(\left(t - 2\right) \cdot \left(t + 5\right) \cdot \left(t - 4\right)\)
MathBot Answer:
Simplified:
\[ \left(t - 2\right) \cdot \left(t + 5\right) \cdot \left(t - 4\right) = \left(t - 4\right) \left(t - 2\right) \left(t + 5\right) \]
Expanded:
\[ \left(t - 2\right) \cdot \left(t + 5\right) \cdot \left(t - 4\right) = t^{3} - t^{2} - 22 t + 40 \]
Factored:
\[ \left(t - 2\right) \cdot \left(t + 5\right) \cdot \left(t - 4\right) = \left(t - 4\right) \left(t - 2\right) \left(t + 5\right) \]