can you find the vertical asymptote of the following:

f(x) = x 2^{2}-36/ 3x+6

asked by guest
on Jan 15, 2025 at 6:33 pm



You asked:

Find any vertical asymptotes of f(x)=x2363x+6f\left( x \right) = {x}^{2} - \frac{36}{3 x} + 6

MathBot Answer:

f(x)=x2+6363xf(x)=x^{2} + 6 - \frac{36}{3 x} has a vertical asymptote at x=0x=0.


A line x=ax = a is a vertical asymptote of a function f(x)f(x) if limxa+f(x)=±\displaystyle \lim_{x \to a^+} f(x) = \pm \infty or limxaf(x)=±\displaystyle \lim_{x \to a^-} f(x) = \pm \infty. To find vertical asymptotes of a function, search for points at which the function is undefined.


f(x)=x2+6363xf(x)=x^{2} + 6 - \frac{36}{3 x} contains 13x\frac{1}{3 x}, so f(x)=x2+6363xf(x)=x^{2} + 6 - \frac{36}{3 x} is undefined where 3x=03 x = 0. Therefore, the function has a potential vertical asymptote at x=0x = 0.

Take the limit of the function as xx approaches 00 from both sides. limx0+(x2+6363x)=limx0(x2+6363x)=\begin{aligned} \lim_{x \to 0^+}\left(x^{2} + 6 - \frac{36}{3 x}\right) &= -\infty\\ \lim_{x \to 0^-}\left(x^{2} + 6 - \frac{36}{3 x}\right) &= -\infty \end{aligned}The limit is infinite as xx approaches from either side, so f(x)=x2+6363xf(x)=x^{2} + 6 - \frac{36}{3 x} has a vertical asymptote at x=0x = 0.

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls