((a^(2)*b)-(a*b))*((a*b^(2))+ab)*(a+b)

asked by guest
on Nov 17, 2024 at 1:55 pm



You asked:

Evaluate the expression: \(\left({a}^{2} \cdot b - a b\right) \cdot \left(a \cdot {b}^{2} + a b\right) \cdot \left(a + b\right)\)

MathBot Answer:

Evaluated



\(\displaystyle \left({a}^{2} \cdot b - a b\right) \cdot \left(a \cdot {b}^{2} + a b\right) \cdot \left(a + b\right) = \left(a + b\right) \left(a^{2} b - a b\right) \left(b^{2} a + a b\right) \)


Expanded

\[\left({a}^{2} \cdot b - a b\right) \cdot \left(a \cdot {b}^{2} + a b\right) \cdot \left(a + b\right) = a^{4} b^{3} + a^{4} b^{2} + a^{3} b^{4} - a^{3} b^{2} - a^{2} b^{4} - a^{2} b^{3}\]


Factored

\[\left({a}^{2} \cdot b - a b\right) \cdot \left(a \cdot {b}^{2} + a b\right) \cdot \left(a + b\right) = a^{2} b^{2} \left(a - 1\right) \left(a + b\right) \left(b + 1\right)\]