9x+1 divided by (9x + 1)(9x - 1)
You asked:
Evaluate the expression: \(9 x + \frac{1}{\left(9 x + 1\right) \cdot \left(9 x - 1\right)}\)
MathBot Answer:
Evaluated
\(\displaystyle 9 x + \frac{1}{\left(9 x + 1\right) \cdot \left(9 x - 1\right)} = 9 x + \frac{1}{\left(9 x - 1\right) \left(9 x + 1\right)} \)
Expanded
\[9 x + \frac{1}{\left(9 x + 1\right) \cdot \left(9 x - 1\right)} = 9 x + \frac{1}{81 x^{2} - 1}\]
Factored
\[9 x + \frac{1}{\left(9 x + 1\right) \cdot \left(9 x - 1\right)} = \frac{729 x^{3} - 9 x + 1}{\left(9 x - 1\right) \left(9 x + 1\right)}\]