6.6*10^-34*7.2*10^14-1.6*10^-19*0.05

asked by guest
on Nov 26, 2024 at 9:50 pm



You asked:

Evaluate the expression: \(6.6 \cdot {10}^{-34} \cdot 7.2 \cdot {10}^{14} - 1.6 \cdot {10}^{-19} \cdot 0.05\)

MathBot Answer:

\[6.6 \cdot {10}^{-34} \cdot 7.2 \cdot {10}^{14} - 1.6 \cdot {10}^{-19} \cdot 0.05 = \frac{73}{156250000000000000000} = 0.0000000000000000004672\]


\[\begin{aligned}6.6 \cdot {10}^{-34} \cdot 7.2 \cdot {10}^{14} - 1.6 \cdot {10}^{-19} \cdot 0.05& = \left(6 + \frac{6}{10}\right) \cdot \frac{1}{10^{34}} \cdot \left(7 + \frac{2}{10}\right) \cdot 10^{14} - \left(1 + \frac{6}{10}\right) \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \left(6 + \frac{3}{5}\right) \cdot \frac{1}{10^{34}} \cdot \left(7 + \frac{2}{10}\right) \cdot 10^{14} - \left(1 + \frac{6}{10}\right) \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \frac{33}{5} \cdot \frac{1}{10^{34}} \cdot \left(7 + \frac{2}{10}\right) \cdot 10^{14} - \left(1 + \frac{6}{10}\right) \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \frac{33}{5} \cdot \frac{1}{10000000000000000000000000000000000} \cdot \left(7 + \frac{2}{10}\right) \cdot 10^{14} - \left(1 + \frac{6}{10}\right) \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \frac{33}{5} \cdot \frac{1}{10000000000000000000000000000000000} \cdot \left(7 + \frac{1}{5}\right) \cdot 10^{14} - \left(1 + \frac{6}{10}\right) \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \frac{33}{5} \cdot \frac{1}{10000000000000000000000000000000000} \cdot \frac{36}{5} \cdot 10^{14} - \left(1 + \frac{6}{10}\right) \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \frac{33}{5} \cdot \frac{1}{10000000000000000000000000000000000} \cdot \frac{36}{5} \cdot 100000000000000 - \left(1 + \frac{6}{10}\right) \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \frac{33}{50000000000000000000000000000000000} \cdot \frac{36}{5} \cdot 100000000000000 - \left(1 + \frac{6}{10}\right) \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \frac{297}{62500000000000000000000000000000000} \cdot 100000000000000 - \left(1 + \frac{6}{10}\right) \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \frac{297}{625000000000000000000} - \left(1 + \frac{6}{10}\right) \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \frac{297}{625000000000000000000} - \left(1 + \frac{3}{5}\right) \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \frac{297}{625000000000000000000} - \frac{8}{5} \cdot \frac{1}{10^{19}} \cdot \frac{5}{100}\\& = \frac{297}{625000000000000000000} - \frac{8}{5} \cdot \frac{5}{10000000000000000000} \cdot \frac{1}{100}\\& = \frac{297}{625000000000000000000} - \frac{5}{6250000000000000000} \cdot \frac{1}{100}\\& = \frac{297}{625000000000000000000} - \frac{1}{1250000000000000000} \cdot \frac{1}{100}\\& = \frac{297}{625000000000000000000} - \frac{1}{125000000000000000000}\\& = \frac{73}{156250000000000000000}\end{aligned}\]