(3.6×10^15)/(0.9×10^−8)

asked by guest
on Nov 22, 2024 at 4:39 pm



You asked:

Evaluate the expression: \(\frac{3.6 \cdot {10}^{15}}{0.9 \cdot {10}^{-8}}\)

MathBot Answer:

\[\frac{3.6 \cdot {10}^{15}}{0.9 \cdot {10}^{-8}} = 400000000000000000000000\]


\[\begin{aligned}\frac{3.6 \cdot {10}^{15}}{0.9 \cdot {10}^{-8}}& = \left(3 + \frac{6}{10}\right) \cdot 10^{15} \cdot \frac{1}{\frac{9}{10} \cdot \frac{1}{10^{8}}}\\& = \left(3 + \frac{3}{5}\right) \cdot 10^{15} \cdot \frac{1}{\frac{9}{10} \cdot \frac{1}{10^{8}}}\\& = \frac{18}{5} \cdot 10^{15} \cdot \frac{1}{\frac{9}{10} \cdot \frac{1}{10^{8}}}\\& = \frac{18}{5} \cdot 1000000000000000 \cdot \frac{1}{\frac{9}{10} \cdot \frac{1}{10^{8}}}\\& = \frac{18}{5} \cdot 1000000000000000 \cdot \frac{1}{\frac{9}{10} \cdot \frac{1}{100000000}}\\& = \frac{18}{5} \cdot 1000000000000000 \cdot \frac{1}{\frac{9}{1000000000}}\\& = \frac{18}{5} \cdot \frac{1000000000000000000000000}{9}\\& = 400000000000000000000000\end{aligned}\]