sin2x -tanx/cos2x =tanx
asked by guest on Apr 02, 2025 at 12:58 pm
You asked:
MathBot Answer:
The real solutions are: x={2πn | n∈Z}≈{6.2831853n | n∈Z}x={π(1+2n) | n∈Z}≈{6.2831853n+3.1415927 | n∈Z}\begin{aligned}x &= \left\{2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi \left(1 + 2 n\right)\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.1415927\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}xx={2πn∣n∈Z}≈{6.2831853n∣n∈Z}={π(1+2n)∣n∈Z}≈{6.2831853n+3.1415927∣n∈Z}