sin (x)-cos (x)=0.35
You asked:
Solve the equation \(\sin\left( x \right) - \cos\left( x \right) = 0.35\) for the variable \(x\).
MathBot Answer:
The real solutions are: \[\begin{aligned}x &= \left\{2 \pi n + \arctan{\left(\frac{400}{351} + \frac{7 \sqrt{751}}{351} \right)}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 1.0354843\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi + 2 \pi n + \arctan{\left(\frac{400}{351} - \frac{7 \sqrt{751}}{351} \right)}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.6769047\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]