Power[\(40)Divide[1549.73*32,Power[x,2]-16]\(41),2]= Power[2500,2]
You asked:
Solve the equation \({\left( \frac{1549.73 \cdot 32}{{x}^{2} - 16} \right)}^{2} = {2500}^{2}\) for the variable \(x\).
MathBot Answer:
The 4 solutions to the equation are: \[\begin{aligned}x &= - \frac{\sqrt{559946}}{125} \approx -5.9863632\\x &= \frac{\sqrt{559946}}{125} \approx 5.9863632\\x &= - \frac{\sqrt{59946}}{125} i \approx -1.9587098 i\\x &= \frac{\sqrt{59946}}{125} i \approx 1.9587098 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).