√(3x(5y + 7z)) + √(5y(7z + 3x)) + √(7z(3x + 5y))

asked by guest
on Nov 22, 2024 at 12:05 pm



You asked:

Evaluate the expression: 3x(5y+7z)+5y(7z+3x)+7z(3x+5y)\sqrt{3 x \left(5 y + 7 z\right)} + \sqrt{5 y \left(7 z + 3 x\right)} + \sqrt{7 z \left(3 x + 5 y\right)}

MathBot Answer:

Evaluated



3x(5y+7z)+5y(7z+3x)+7z(3x+5y)=3x(5y+7z)+5y(3x+7z)+7z(3x+5y)\displaystyle \sqrt{3 x \left(5 y + 7 z\right)} + \sqrt{5 y \left(7 z + 3 x\right)} + \sqrt{7 z \left(3 x + 5 y\right)} = \sqrt{3} \sqrt{x \left(5 y + 7 z\right)} + \sqrt{5} \sqrt{y \left(3 x + 7 z\right)} + \sqrt{7} \sqrt{z \left(3 x + 5 y\right)}


Expanded

3x(5y+7z)+5y(7z+3x)+7z(3x+5y)=15xy+21xz+15xy+35yz+21xz+35yz\sqrt{3 x \left(5 y + 7 z\right)} + \sqrt{5 y \left(7 z + 3 x\right)} + \sqrt{7 z \left(3 x + 5 y\right)} = \sqrt{15 x y + 21 x z} + \sqrt{15 x y + 35 y z} + \sqrt{21 x z + 35 y z}


Factored

3x(5y+7z)+5y(7z+3x)+7z(3x+5y)=53xy+7yz+35xy+7xz+73xz+5yz\sqrt{3 x \left(5 y + 7 z\right)} + \sqrt{5 y \left(7 z + 3 x\right)} + \sqrt{7 z \left(3 x + 5 y\right)} = \sqrt{5} \sqrt{3 x y + 7 y z} + \sqrt{3} \sqrt{5 x y + 7 x z} + \sqrt{7} \sqrt{3 x z + 5 y z}