y+2x=7

2x^2+x+3y=19

asked by guest
on Mar 29, 2025 at 4:10 pm



You asked:

Solve the system of equations:y+2x=72x2+x+3y=19\begin{aligned}y + 2 x &= 7\\2 {x}^{2} + x + 3 y &= 19\end{aligned}

MathBot Answer:

The system of equations has 22 solutions.

x=12,y=6x = \frac{1}{2}, y = 6x=2,y=3x = 2, y = 3


Solve 2x+y=72 x + y = 7 for xx. x=72y2x = \frac{7}{2} - \frac{y}{2}Substitute 72y2\frac{7}{2} - \frac{y}{2} for xx in 2x2+x+3y=192 x^{2} + x + 3 y = 19 and simplify. 2x2+x+3y=192(72y2)2+(72y2)+3y=19y29y=18y29y+18=0(y6)(y3)=0y=3,y=6\begin{aligned}2 x^{2} + x + 3 y &= 19 \\ 2 \left(\frac{7}{2} - \frac{y}{2}\right)^{2} + \left(\frac{7}{2} - \frac{y}{2}\right) + 3 y &= 19 \\ y^{2} - 9 y &= -18 \\y^{2} - 9 y + 18 &= 0 \\ \left(y - 6\right) \left(y - 3\right) &= 0 \\ y = 3&, y = 6\end{aligned}Substitute 33 into 2x+y=72 x + y = 7 to solve for xx. 2x+3=72x=4x=2\begin{aligned}2 x + 3 &= 7\\2 x &= 4\\x &= 2\end{aligned}This yields the following solution. x=2,y=3\begin{aligned}x = 2,\,y = 3\end{aligned}Substitute 66 into 2x+y=72 x + y = 7 to solve for xx. 2x+6=72x=1x=12\begin{aligned}2 x + 6 &= 7\\2 x &= 1\\x &= \frac{1}{2}\end{aligned}This yields the following solution. x=12,y=6\begin{aligned}x = \frac{1}{2},\,y = 6\end{aligned}

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls