2.46Times 0.03 over 0.12

asked by guest
on Jan 09, 2025 at 9:52 am



You asked:

Evaluate the expression: \(\frac{2.46 \cdot 0.03}{0.12}\)

MathBot Answer:

\[\frac{2.46 \cdot 0.03}{0.12} = \frac{123}{200} = 0.615\]


\[\begin{aligned}\frac{2.46 \cdot 0.03}{0.12}& = \left(2 + \frac{46}{100}\right) \cdot \frac{3}{100} \cdot \frac{1}{\frac{12}{100}}\\& = \left(2 + \frac{23}{50}\right) \cdot \frac{3}{100} \cdot \frac{1}{\frac{12}{100}}\\& = \frac{123}{50} \cdot \frac{3}{100} \cdot \frac{1}{\frac{12}{100}}\\& = \frac{123}{50} \cdot \frac{3}{100} \cdot \frac{1}{\frac{3}{25}}\\& = \frac{123}{50} \cdot \frac{3}{12}\\& = \frac{369}{50} \cdot \frac{1}{12}\\& = \frac{123}{200}\end{aligned}\]