(1-x)(-x^3)+(1-x)^3(3x)-(1-x)^4

asked by guest
on Apr 06, 2025 at 8:53 pm



You asked:

Evaluate the expression: (1x)x3+(1x)33x(1x)4\left(1 - x\right) \cdot -{x}^{3} + {\left( 1 - x \right)}^{3} \cdot 3 x - {\left( 1 - x \right)}^{4}

MathBot Answer:

Evaluated



(1x)x3+(1x)33x(1x)4=x3(1x)+3x(1x)3(1x)4\displaystyle \left(1 - x\right) \cdot -{x}^{3} + {\left( 1 - x \right)}^{3} \cdot 3 x - {\left( 1 - x \right)}^{4} = - x^{3} \cdot \left(1 - x\right) + 3 x \left(1 - x\right)^{3} - \left(1 - x\right)^{4}


Expanded

(1x)x3+(1x)33x(1x)4=3x4+12x315x2+7x1\left(1 - x\right) \cdot -{x}^{3} + {\left( 1 - x \right)}^{3} \cdot 3 x - {\left( 1 - x \right)}^{4} = - 3 x^{4} + 12 x^{3} - 15 x^{2} + 7 x - 1


Factored

(1x)x3+(1x)33x(1x)4=(x1)(3x39x2+6x1)\left(1 - x\right) \cdot -{x}^{3} + {\left( 1 - x \right)}^{3} \cdot 3 x - {\left( 1 - x \right)}^{4} = - \left(x - 1\right) \left(3 x^{3} - 9 x^{2} + 6 x - 1\right)