3(x-1)/x^2-4x-5-2/x-5
You asked:
Evaluate the expression: \(\frac{3 \cdot \left(x - 1\right)}{{x}^{2}} - 4 x - 5 - \frac{2}{x} - 5\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{3 \cdot \left(x - 1\right)}{{x}^{2}} - 4 x - 5 - \frac{2}{x} - 5 = - 4 x - 10 - \frac{2}{x} + \frac{3 \left(x - 1\right)}{x^{2}} \)
Expanded
\[\frac{3 \cdot \left(x - 1\right)}{{x}^{2}} - 4 x - 5 - \frac{2}{x} - 5 = - 4 x - 10 + \frac{1}{x} - \frac{3}{x^{2}}\]
Factored
\[\frac{3 \cdot \left(x - 1\right)}{{x}^{2}} - 4 x - 5 - \frac{2}{x} - 5 = - \frac{4 x^{3} + 10 x^{2} - x + 3}{x^{2}}\]