3(x-1)/x^2-4x-5-2/x-5

asked by guest
on Nov 24, 2024 at 2:53 am



You asked:

Evaluate the expression: \(\frac{3 \cdot \left(x - 1\right)}{{x}^{2}} - 4 x - 5 - \frac{2}{x} - 5\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{3 \cdot \left(x - 1\right)}{{x}^{2}} - 4 x - 5 - \frac{2}{x} - 5 = - 4 x - 10 - \frac{2}{x} + \frac{3 \left(x - 1\right)}{x^{2}} \)


Expanded

\[\frac{3 \cdot \left(x - 1\right)}{{x}^{2}} - 4 x - 5 - \frac{2}{x} - 5 = - 4 x - 10 + \frac{1}{x} - \frac{3}{x^{2}}\]


Factored

\[\frac{3 \cdot \left(x - 1\right)}{{x}^{2}} - 4 x - 5 - \frac{2}{x} - 5 = - \frac{4 x^{3} + 10 x^{2} - x + 3}{x^{2}}\]