p ↔ q ≡ ~[(p ∨ q) ∧ ~(p ∧ q)]

asked by guest
on Apr 04, 2025 at 10:00 am



MathBot Answer:

Logic Expression
Symbol: (pq)¬((pq)¬(pq))\left(p \leftrightarrow q\right) \leftrightarrow \neg \left(\left(p \vee q\right) \wedge \neg \left(p \wedge q\right)\right)
Text: (p if and only if q) if and only if not((p or q) and not(p and q))\left(p \text{ if and only if } q\right) \text{ if and only if } \text{not} \left(\left(p \text{ or } q\right) \text{ and } \text{not} \left(p \text{ and } q\right)\right)


Classification tautology


Truth Table

Legend

ppqqpqp \leftrightarrow qpqp \vee qpqp \wedge q¬(pq)\neg \left(p \wedge q\right)(pq)¬(pq)\left(p \vee q\right) \wedge \neg \left(p \wedge q\right)¬((pq)¬(pq))\neg \left(\left(p \vee q\right) \wedge \neg \left(p \wedge q\right)\right)(pq)¬((pq)¬(pq))\left(p \leftrightarrow q\right) \leftrightarrow \neg \left(\left(p \vee q\right) \wedge \neg \left(p \wedge q\right)\right)
111110011
100101101
010101101
001001011
T/F

Simplification(pq)¬((pq)¬(pq))((p¬q)(¬pq))¬((pq)¬(pq))Biconditional Equivalence((p¬q)(¬pq))(¬(pq)¬(¬(pq)))De Morgan’s Law((p¬q)(¬pq))((¬p¬q)¬(¬(pq)))De Morgan’s Law((p¬q)(¬pq))((¬p¬q)(pq))Double Negation Law(((p¬q)(¬pq))¬((¬p¬q)(pq)))(¬((p¬q)(¬pq))(¬p¬q)(pq))Biconditional Equivalence(((p¬q)(¬pq))(¬(¬p¬q)¬(pq)))(¬((p¬q)(¬pq))(¬p¬q)(pq))De Morgan’s Law(((p¬q)(¬pq))(¬(¬(pq))¬(pq)))(¬((p¬q)(¬pq))(¬p¬q)(pq))De Morgan’s Law(((p¬q)(¬pq))((pq)¬(pq)))(¬((p¬q)(¬pq))(¬p¬q)(pq))Double Negation Law(((p¬q)(¬pq))((pq)(¬p¬q)))(¬((p¬q)(¬pq))(¬p¬q)(pq))De Morgan’s Law(((p¬q)(¬pq))((pq)(¬p¬q)))(¬(p¬q)¬(¬pq)(¬p¬q)(pq))De Morgan’s Law(((p¬q)(¬pq))((pq)(¬p¬q)))((¬p¬(¬q))¬(¬pq)(¬p¬q)(pq))De Morgan’s Law(((p¬q)(¬pq))((pq)(¬p¬q)))((¬pq)¬(¬pq)(¬p¬q)(pq))Double Negation Law(((p¬q)(¬pq))((pq)(¬p¬q)))((¬pq)(¬(¬p)¬q)(¬p¬q)(pq))De Morgan’s Law(((p¬q)(¬pq))((pq)(¬p¬q)))((¬pq)(p¬q)(¬p¬q)(pq))Double Negation Law(((p¬q)(¬pq))((pq)(¬p¬q)))((¬pq)¬q(pq))Redundancy Law (1)(((p¬q)(¬pq))((pq)(¬p¬q)))((¬pq)(pq)¬q)Commutative Law(((p¬q)(¬pq))((pq)(¬p¬q)))(q¬q)Redundancy Law (1)(((p¬q)(¬pq))((pq)(¬p¬q)))TrueComplement Law((p¬q)(¬pq))((pq)(¬p¬q))Identity Law((p¬q)¬p)((p¬q)q)((pq)(¬p¬q))Distributive Law(¬q¬p)((p¬q)q)((pq)(¬p¬q))Redundancy Law (2)(¬q¬p)(pq)((pq)(¬p¬q))Redundancy Law (2)(¬q¬p)(pq)((pq)¬(pq))De Morgan’s Law(¬q¬p)(pq)pqRedundancy Law (2)(¬q¬p)pqAbsorption Law¬qpqRedundancy Law (2)¬qqpCommutative LawTruepComplement LawTrueDomination Law\begin{gathered} \left(p \leftrightarrow q\right) \leftrightarrow \neg \left(\left(p \vee q\right) \wedge \neg \left(p \wedge q\right)\right) & \equiv & \left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \leftrightarrow \neg \left(\left(p \vee q\right) \wedge \neg \left(p \wedge q\right)\right) & \text{Biconditional Equivalence} \\ & \equiv & \left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \leftrightarrow \left(\neg \left(p \vee q\right) \vee \neg \left(\neg \left(p \wedge q\right)\right)\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \leftrightarrow \left(\left(\neg p \wedge \neg q\right) \vee \neg \left(\neg \left(p \wedge q\right)\right)\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \leftrightarrow \left(\left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right) & \text{Double Negation Law} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \neg \left(\left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right)\right) \wedge \left(\neg \left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right) & \text{Biconditional Equivalence} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\neg \left(\neg p \wedge \neg q\right) \wedge \neg \left(p \wedge q\right)\right)\right) \wedge \left(\neg \left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\neg \left(\neg \left(p \vee q\right)\right) \wedge \neg \left(p \wedge q\right)\right)\right) \wedge \left(\neg \left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \neg \left(p \wedge q\right)\right)\right) \wedge \left(\neg \left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right) & \text{Double Negation Law} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right)\right) \wedge \left(\neg \left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right)\right) \wedge \left(\neg \left(p \vee \neg q\right) \vee \neg \left(\neg p \vee q\right) \vee \left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right)\right) \wedge \left(\left(\neg p \wedge \neg \left(\neg q\right)\right) \vee \neg \left(\neg p \vee q\right) \vee \left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right)\right) \wedge \left(\left(\neg p \wedge q\right) \vee \neg \left(\neg p \vee q\right) \vee \left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right) & \text{Double Negation Law} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right)\right) \wedge \left(\left(\neg p \wedge q\right) \vee \left(\neg \left(\neg p\right) \wedge \neg q\right) \vee \left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right) & \text{De Morgan's Law} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right)\right) \wedge \left(\left(\neg p \wedge q\right) \vee \left(p \wedge \neg q\right) \vee \left(\neg p \wedge \neg q\right) \vee \left(p \wedge q\right)\right) & \text{Double Negation Law} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right)\right) \wedge \left(\left(\neg p \wedge q\right) \vee \neg q \vee \left(p \wedge q\right)\right) & \text{Redundancy Law (1)} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right)\right) \wedge \left(\left(\neg p \wedge q\right) \vee \left(p \wedge q\right) \vee \neg q\right) & \text{Commutative Law} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right)\right) \wedge \left(q \vee \neg q\right) & \text{Redundancy Law (1)} \\ & \equiv & \left(\left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right)\right) \wedge \text{True} & \text{Complement Law} \\ & \equiv & \left(\left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right)\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right) & \text{Identity Law} \\ & \equiv & \left(\left(p \vee \neg q\right) \wedge \neg p\right) \vee \left(\left(p \vee \neg q\right) \wedge q\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right) & \text{Distributive Law} \\ & \equiv & \left(\neg q \wedge \neg p\right) \vee \left(\left(p \vee \neg q\right) \wedge q\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right) & \text{Redundancy Law (2)} \\ & \equiv & \left(\neg q \wedge \neg p\right) \vee \left(p \wedge q\right) \vee \left(\left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right)\right) & \text{Redundancy Law (2)} \\ & \equiv & \left(\neg q \wedge \neg p\right) \vee \left(p \wedge q\right) \vee \left(\left(p \vee q\right) \wedge \neg \left(p \wedge q\right)\right) & \text{De Morgan's Law} \\ & \equiv & \left(\neg q \wedge \neg p\right) \vee \left(p \wedge q\right) \vee p \vee q & \text{Redundancy Law (2)} \\ & \equiv & \left(\neg q \wedge \neg p\right) \vee p \vee q & \text{Absorption Law} \\ & \equiv & \neg q \vee p \vee q & \text{Redundancy Law (2)} \\ & \equiv & \neg q \vee q \vee p & \text{Commutative Law} \\ & \equiv & \text{True} \vee p & \text{Complement Law} \\ & \equiv & \text{True} & \text{Domination Law} \end{gathered} Note: Solution may not be as simplified as possible.


Conjunctive Normal FormTrue\text{True}


Note 1: These equivalences and tautologies are used to generate the above steps.
Note 2: Two logical statements are logically equivalent if they always produce the same truth value. Consequently, p ≡ q is same as saying p ↔ q is a tautology. EquivalenceAbsorption Lawp(pq)pp(pq)pBiconditional Equivalencepq(p¬q)(¬pq)pq(pq)(¬p¬q)Biconditional SimplificationppTruepTruepp¬pFalsepFalse¬pComplement Lawp¬pFalsep¬pTrueConditional Equivalencepq¬pqConditional SimplificationppTruepTrueTruepFalse¬pp¬p¬pTrueppFalsepTrue¬pppConsensus Law(pq)(¬pr)(qr)(pq)(¬pr)(pq)(¬pr)(qr)(pq)(¬pr)De Morgan’s Law¬(pq)¬p¬q¬(pq)¬p¬qDistributive Lawp(qr)(pq)(pr)p(qr)(pq)(pr)(pq)(rs)(pr)(ps)(qr)(qs)(pq)(rs)(pr)(ps)(qr)(qs)Domination LawpTrueTruepFalseFalseDouble Negation Law¬(¬p)pIdempotent LawppppppIdentity LawpTrueppFalsepNANDpq¬(pq)Negation Law¬TrueFalse¬FalseTrueNORpq¬(pq)Negation of Biconditional Equivalence¬(pq)(pq)(¬p¬q)¬(pq)(p¬q)(¬pq)Negation of Conditional Equivalence¬(pq)p¬qRedundancy Law (1)(pq)(p¬q)p(pq)(p¬q)pRedundancy Law (2)p(¬pq)pqp(¬pq)pqXORpq(pq)(¬p¬q)pq(p¬q)(¬pq)XOR SimplificationppFalsepTrue¬pp¬pTruepFalsepXNORpq¬(pq)\begin{array}{c|c}\textbf{Equivalence} \\ \hline \text{Absorption Law} & \begin{gathered} p \wedge \left(p \vee q\right) \equiv p \\ p \vee \left(p \wedge q\right) \equiv p \end{gathered} \\ \hline \text{Biconditional Equivalence} & \begin{gathered} p \leftrightarrow q \equiv \left(p \vee \neg q\right) \wedge \left(\neg p \vee q\right) \\ p \leftrightarrow q \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge \neg q\right) \end{gathered} \\ \hline \text{Biconditional Simplification} & \begin{gathered} p \leftrightarrow p \equiv \text{True} & p \leftrightarrow \text{True} \equiv p \\ p \leftrightarrow \neg p \equiv \text{False} & p \leftrightarrow \text{False} \equiv \neg p \end{gathered} \\ \hline \text{Complement Law} & \begin{gathered} p \wedge \neg p \equiv \text{False} \\ p \vee \neg p \equiv \text{True} \end{gathered} \\ \hline \text{Conditional Equivalence} & p \rightarrow q \equiv \neg p \vee q \\ \hline \text{Conditional Simplification} & \begin{gathered} p \rightarrow p \equiv \text{True} & p \rightarrow \text{True} \equiv \text{True} & p \rightarrow \text{False} \equiv \neg p \\ p \rightarrow \neg p \equiv \neg p & \text{True} \rightarrow p \equiv p & \text{False} \rightarrow p \equiv \text{True} \\ \neg p \rightarrow p \equiv p\end{gathered} \\ \hline \text{Consensus Law} & \begin{gathered} \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \wedge \left(q \vee r\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee r\right) \\ \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \vee \left(q \wedge r\right) \equiv \left(p \wedge q\right) \vee \left(\neg p \wedge r\right) \end{gathered} \\ \hline \text{De Morgan's Law} & \begin{gathered} \neg \left(p \wedge q\right) \equiv \neg p \vee \neg q \\ \neg \left(p \vee q\right) \equiv \neg p \wedge \neg q \end{gathered} \\ \hline \text{Distributive Law} & \begin{gathered} p \wedge \left(q \vee r\right) \equiv \left(p \wedge q\right) \vee \left(p \wedge r\right) \\ p \vee \left(q \wedge r\right) \equiv \left(p \vee q\right) \wedge \left(p \vee r\right) \\ \left(p \vee q\right) \wedge \left(r \vee s\right) \equiv \left(p \wedge r\right) \vee \left(p \wedge s\right) \vee \left(q \wedge r\right) \vee \left(q \wedge s\right) \\ \left(p \wedge q\right) \vee \left(r \wedge s\right) \equiv \left(p \vee r\right) \wedge \left(p \vee s\right) \wedge \left(q \vee r\right) \wedge \left(q \vee s\right) \end{gathered} \\ \hline \text{Domination Law} & \begin{gathered} p \vee \text{True} \equiv \text{True} \\ p \wedge \text{False} \equiv \text{False} \end{gathered} \\ \hline \text{Double Negation Law} & \neg \left(\neg p\right) \equiv p \\ \hline \text{Idempotent Law} & \begin{gathered} p \wedge p \equiv p \\ p \vee p \equiv p \end{gathered} \\ \hline \text{Identity Law} & \begin{gathered} p \wedge \text{True} \equiv p \\ p \vee \text{False} \equiv p \end{gathered} \\ \hline \text{NAND} & p \uparrow q \equiv \neg \left(p \wedge q\right) \\ \hline \text{Negation Law} & \begin{gathered} \neg \text{True} \equiv \text{False} \\ \neg \text{False} \equiv \text{True} \end{gathered} \\ \hline \text{NOR} & p \downarrow q \equiv \neg \left(p \vee q\right) \\ \hline \text{Negation of Biconditional Equivalence} & \begin{gathered} \neg \left(p \leftrightarrow q\right) \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ \neg \left(p \leftrightarrow q\right) \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{Negation of Conditional Equivalence} & \neg \left(p \rightarrow q\right) \equiv p \wedge \neg q \\ \hline \text{Redundancy Law (1)} & \begin{gathered} \left(p \vee q\right) \wedge \left(p \vee \neg q\right) \equiv p \\ \left(p \wedge q\right) \vee \left(p \wedge \neg q\right) \equiv p \end{gathered} \\ \hline \text{Redundancy Law (2)} & \begin{gathered} p \wedge \left(\neg p \vee q\right) \equiv p \wedge q \\ p \vee \left(\neg p \wedge q\right) \equiv p \vee q \end{gathered} \\ \hline \text{XOR} & \begin{gathered} p \oplus q \equiv \left(p \vee q\right) \wedge \left(\neg p \vee \neg q\right) \\ p \oplus q \equiv \left(p \wedge \neg q\right) \vee \left(\neg p \wedge q\right) \end{gathered} \\ \hline \text{XOR Simplification} & \begin{gathered} p \oplus p \equiv \text{False} & p \oplus \text{True} \equiv \neg p \\ p \oplus \neg p \equiv \text{True} & p \oplus \text{False} \equiv p \end{gathered} \\ \hline \text{XNOR} & p \odot q \equiv \neg \left(p \oplus q\right) \end{array} TautologyConjunctive Simplification(pq)p(pq)qContradiction¬(p¬p)Contrapositive(pq)(¬q¬p)Disjunctive Additionp(pq)q(pq)Disjunctive Syllogism((pq)¬q)p((pq)¬p)qHypothetical Syllogism((pq)(qr))(pr)Modus Ponens(p(pq))qModus Tollens(¬q(pq))¬p\begin{array}{c|c}\textbf{Tautology} \\ \hline \text{Conjunctive Simplification} & \begin{gathered} \left(p \wedge q\right) \rightarrow p \\ \left(p \wedge q\right) \rightarrow q \end{gathered} \\ \hline \text{Contradiction} & \neg \left(p \wedge \neg p\right) \\ \hline \text{Contrapositive} & \left(p \rightarrow q\right) \leftrightarrow \left(\neg q \rightarrow \neg p\right) \\ \hline \text{Disjunctive Addition} & \begin{gathered} p \rightarrow \left(p \vee q\right) \\ q \rightarrow \left(p \vee q\right) \end{gathered} \\ \hline \text{Disjunctive Syllogism} & \begin{gathered} \left(\left(p \vee q\right) \wedge \neg q\right) \rightarrow p \\ \left(\left(p \vee q\right) \wedge \neg p\right) \rightarrow q \end{gathered} \\ \hline \text{Hypothetical Syllogism} & \left(\left(p \rightarrow q\right) \wedge \left(q \rightarrow r\right)\right) \rightarrow \left(p \rightarrow r\right) \\ \hline \text{Modus Ponens} & \left(p \wedge \left(p \rightarrow q\right)\right) \rightarrow q \\ \hline \text{Modus Tollens} & \left(\neg q \wedge \left(p \rightarrow q\right)\right) \rightarrow \neg p \end{array}