x^3-5x^2+3x-9=0

asked by guest
on Apr 04, 2025 at 8:35 am



You asked:

Solve the equation x35x2+3x9=0{x}^{3} - 5 {x}^{2} + 3 x - 9 = 0 for the variable xx.

MathBot Answer:

The 3 solutions to the equation are: x=53+17927+34533+16917927+345334.7667344x=3453+1792732893453+179273+53+i(8393453+179273+33453+1792732)0.11663278+1.3691172ix=3453+1792732893453+179273+53+i(33453+1792732+8393453+179273)0.116632781.3691172i\begin{aligned}x &= \frac{5}{3} + \sqrt[3]{\frac{179}{27} + \frac{\sqrt{345}}{3}} + \frac{16}{9 \sqrt[3]{\frac{179}{27} + \frac{\sqrt{345}}{3}}} \approx 4.7667344\\x &= - \frac{\sqrt[3]{\frac{\sqrt{345}}{3} + \frac{179}{27}}}{2} - \frac{8}{9 \sqrt[3]{\frac{\sqrt{345}}{3} + \frac{179}{27}}} + \frac{5}{3} + i \left(- \frac{8 \sqrt{3}}{9 \sqrt[3]{\frac{\sqrt{345}}{3} + \frac{179}{27}}} + \frac{\sqrt{3} \sqrt[3]{\frac{\sqrt{345}}{3} + \frac{179}{27}}}{2}\right) \approx 0.11663278 + 1.3691172 i\\x &= - \frac{\sqrt[3]{\frac{\sqrt{345}}{3} + \frac{179}{27}}}{2} - \frac{8}{9 \sqrt[3]{\frac{\sqrt{345}}{3} + \frac{179}{27}}} + \frac{5}{3} + i \left(- \frac{\sqrt{3} \sqrt[3]{\frac{\sqrt{345}}{3} + \frac{179}{27}}}{2} + \frac{8 \sqrt{3}}{9 \sqrt[3]{\frac{\sqrt{345}}{3} + \frac{179}{27}}}\right) \approx 0.11663278 -1.3691172 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.