84*0.98/84*1,57
MathBot Answer:
The sum of \(\frac{84 \cdot 0.98}{84} \cdot 1\) and \(57\) is:
\[\begin{aligned}&=\left(\frac{84 \cdot 0.98}{84} \cdot 1\right) + \left(57\right) \\\\ &= 84 \cdot 98 \cdot \frac{1}{100} \cdot \frac{1}{84} \cdot 1 + 57 \\\\ &= \frac{2899}{50} \\\\\end{aligned}\]
The difference of \(\frac{84 \cdot 0.98}{84} \cdot 1\) and \(57\) is:
\[\begin{aligned}&=\left(\frac{84 \cdot 0.98}{84} \cdot 1\right) - \left(57\right) \\\\ &= -57 + 84 \cdot 98 \cdot \frac{1}{100} \cdot \frac{1}{84} \cdot 1 \\\\ &= - \frac{2801}{50} \\\\\end{aligned}\]
The product of \(\frac{84 \cdot 0.98}{84} \cdot 1\) and \(57\) is:
\[\begin{aligned}&=\left(\frac{84 \cdot 0.98}{84} \cdot 1\right) \cdot \left(57\right) \\\\ &= \frac{2793}{50} \\\\\end{aligned}\]
The quotient of \(\frac{84 \cdot 0.98}{84} \cdot 1\) and \(57\) is:
\[\begin{aligned}&= \frac{\left(\frac{84 \cdot 0.98}{84} \cdot 1\right)}{\left(57\right)} \\\\ &= \frac{49}{2850} \\\\\end{aligned}\]