3xy + 1 = 2y - 5x
You asked:
Investigate the equation: \(3 x y + 1 = 2 y - 5 x\).
MathBot Answer:
The graph of the equation \(3 x y + 1 = 2 y - 5 x\) is a hyperbola.
The coordinates of its foci are: \(\left(\frac{2}{3} - \frac{\sqrt{26}}{3}, - \frac{5}{3} + \frac{\sqrt{26}}{3}\right)\) and \(\left(\frac{2}{3} + \frac{\sqrt{26}}{3}, - \frac{\sqrt{26}}{3} - \frac{5}{3}\right)\).
The coordinates of its vertices are: \(\left(\frac{2}{3} - \frac{\sqrt{13}}{3}, - \frac{5}{3} + \frac{\sqrt{13}}{3}\right)\) and \(\left(\frac{2}{3} + \frac{\sqrt{13}}{3}, - \frac{5}{3} - \frac{\sqrt{13}}{3}\right)\).
The asymptotes have equations: \(- 12 \sqrt{13} x + 8 \sqrt{13} = 0\) and \(12 \sqrt{13} y + 20 \sqrt{13} = 0\).