(5x-2)(3x+5)-(3x+5)(x+2)
You asked:
Evaluate the expression: \(\left(5 x - 2\right) \cdot \left(3 x + 5\right) - \left(3 x + 5\right) \cdot \left(x + 2\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(5 x - 2\right) \cdot \left(3 x + 5\right) - \left(3 x + 5\right) \cdot \left(x + 2\right) = \left(3 x + 5\right) \left(5 x - 2\right) - \left(3 x + 5\right) \left(x + 2\right) \)
Expanded
\[\left(5 x - 2\right) \cdot \left(3 x + 5\right) - \left(3 x + 5\right) \cdot \left(x + 2\right) = 12 x^{2} + 8 x - 20\]
Factored
\[\left(5 x - 2\right) \cdot \left(3 x + 5\right) - \left(3 x + 5\right) \cdot \left(x + 2\right) = 4 \cdot \left(3 x + 5\right) \left(x - 1\right)\]