4x*y+2x+2y=54

asked by guest
on Jan 23, 2025 at 6:40 pm



You asked:

Investigate the equation: \(4 x y + 2 x + 2 y = 54\).

MathBot Answer:

The graph of the equation \(4 x y + 2 x + 2 y = 54\) is a hyperbola.


The coordinates of its foci are: \(\left(- \frac{\sqrt{110}}{2} - \frac{1}{2}, - \frac{\sqrt{110}}{2} - \frac{1}{2}\right)\) and \(\left(- \frac{1}{2} + \frac{\sqrt{110}}{2}, - \frac{1}{2} + \frac{\sqrt{110}}{2}\right)\).

The coordinates of its vertices are: \(\left(- \frac{\sqrt{55}}{2} - \frac{1}{2}, - \frac{\sqrt{55}}{2} - \frac{1}{2}\right)\) and \(\left(- \frac{1}{2} + \frac{\sqrt{55}}{2}, - \frac{1}{2} + \frac{\sqrt{55}}{2}\right)\).

The asymptotes have equations: \(- \sqrt{55} x - \frac{\sqrt{55}}{2} = 0\) and \(- \sqrt{55} y - \frac{\sqrt{55}}{2} = 0\).