9552.42=8000(1.03)^x
You asked:
Solve the equation \(9552.42 = 8000 \cdot {1.03}^{x}\) for the variable \(x\).
MathBot Answer:
The solution is: \[x = \frac{- \log{\left(477621 \right)} + \log{\left(400000 \right)}}{- \log{\left(103 \right)} + 2 \log{\left(10 \right)}} \approx 6.0000058\]