csc2 x - 1 = 1/tan 2
You asked:
Solve the equation \(\csc\left( 2 \right) \cdot x - 1 = \frac{1}{\tan\left( 2 \right)}\) for the variable \(x\).
MathBot Answer:
The solution is: \[x = \sqrt{2} \sin{\left(2 + \frac{\pi}{4} \right)} \approx 0.49315059\]
\[\begin{aligned}x \csc{\left(2 \right)} - 1 &= \frac{1}{\tan{\left(2 \right)}}\\x \csc{\left(2 \right)} &= \frac{\tan{\left(2 \right)} + 1}{\tan{\left(2 \right)}}\\x &= \frac{\tan{\left(2 \right)} + 1}{\tan{\left(2 \right)} \csc{\left(2 \right)}}\end{aligned}\]