3-4²-12÷2 ² / -3² ÷ 3200 / 9000

asked by guest
on Jan 23, 2025 at 1:28 pm



You asked:

Evaluate the expression: \(3 - {4}^{2} - \frac{\frac{\frac{{\left( \frac{12}{2} \right)}^{2}}{-{3}^{2}}}{3200}}{9000}\)

MathBot Answer:

\[3 - {4}^{2} - \frac{\frac{\frac{{\left( \frac{12}{2} \right)}^{2}}{-{3}^{2}}}{3200}}{9000} = - \frac{93599999}{7200000} = -12.99999986\overline{1}\]


\[\begin{aligned}3 - {4}^{2} - \frac{\frac{\frac{{\left( \frac{12}{2} \right)}^{2}}{-{3}^{2}}}{3200}}{9000}& = 3 - 4^{2} - \left(\frac{12}{2}\right)^{2} \cdot \frac{1}{- 3^{2}} \cdot \frac{1}{3200} \cdot \frac{1}{9000}\\& = 3 - 16 - \left(\frac{12}{2}\right)^{2} \cdot \frac{1}{- 3^{2}} \cdot \frac{1}{3200} \cdot \frac{1}{9000}\\& = 3 - 16 - 36 \cdot \frac{1}{- 3^{2}} \cdot \frac{1}{3200} \cdot \frac{1}{9000}\\& = 3 - 16 - 36 \cdot \frac{1}{- 9} \cdot \frac{1}{3200} \cdot \frac{1}{9000}\\& = 3 - 16 - \frac{36}{-9} \cdot \frac{1}{3200} \cdot \frac{1}{9000}\\& = 3 - 16 - \frac{-36}{9} \cdot \frac{1}{3200} \cdot \frac{1}{9000}\\& = 3 - 16 - \frac{-36}{9} \cdot \frac{1}{28800000}\\& = 3 - 16 - \frac{-4}{28800000}\\& = 3 - 16 - - \frac{1}{7200000}\\& = 3 - 16 + \frac{1}{7200000}\\& = -13 + \frac{1}{7200000}\\& = - \frac{93599999}{7200000}\end{aligned}\]