(3x-7)[3(x+1)-2(x+3)]-2x(x+6)=
You asked:
Evaluate the expression: \(\left(3 x - 7\right) \cdot \left(3 \cdot \left(x + 1\right) - 2 \cdot \left(x + 3\right)\right) - 2 \cdot x \cdot \left(x + 6\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(3 x - 7\right) \cdot \left(3 \cdot \left(x + 1\right) - 2 \cdot \left(x + 3\right)\right) - 2 \cdot x \cdot \left(x + 6\right) = - 2 x \left(x + 6\right) + \left(3 x - 7\right) \left(x - 3\right) \)
Expanded
\[\left(3 x - 7\right) \cdot \left(3 \cdot \left(x + 1\right) - 2 \cdot \left(x + 3\right)\right) - 2 \cdot x \cdot \left(x + 6\right) = x^{2} - 28 x + 21\]
Factored
\[\left(3 x - 7\right) \cdot \left(3 \cdot \left(x + 1\right) - 2 \cdot \left(x + 3\right)\right) - 2 \cdot x \cdot \left(x + 6\right) = x^{2} - 28 x + 21\]