$\sqrt{2}$ 38,25

asked by guest
on Dec 08, 2024 at 4:13 am



MathBot Answer:

The sum of \(\sqrt{2} \cdot 38\) and \(25\) is:

\[\begin{aligned}&=\left(\sqrt{2} \cdot 38\right) + \left(25\right) \\\\ &= 25 + \sqrt{2} \cdot 38 \\\\ &= 25 + 38 \sqrt{2} \\\\\end{aligned}\]


The difference of \(\sqrt{2} \cdot 38\) and \(25\) is:

\[\begin{aligned}&=\left(\sqrt{2} \cdot 38\right) - \left(25\right) \\\\ &= -25 + \sqrt{2} \cdot 38 \\\\ &= -25 + 38 \sqrt{2} \\\\\end{aligned}\]


The product of \(\sqrt{2} \cdot 38\) and \(25\) is:

\[\begin{aligned}&=\left(\sqrt{2} \cdot 38\right) \cdot \left(25\right) \\\\ &= 950 \sqrt{2} \\\\\end{aligned}\]


The quotient of \(\sqrt{2} \cdot 38\) and \(25\) is:

\[\begin{aligned}&= \frac{\left(\sqrt{2} \cdot 38\right)}{\left(25\right)} \\\\ &= \frac{38 \sqrt{2}}{25} \\\\\end{aligned}\]