$\sqrt{2}$ 38,25
MathBot Answer:
The sum of \(\sqrt{2} \cdot 38\) and \(25\) is:
\[\begin{aligned}&=\left(\sqrt{2} \cdot 38\right) + \left(25\right) \\\\ &= 25 + \sqrt{2} \cdot 38 \\\\ &= 25 + 38 \sqrt{2} \\\\\end{aligned}\]
The difference of \(\sqrt{2} \cdot 38\) and \(25\) is:
\[\begin{aligned}&=\left(\sqrt{2} \cdot 38\right) - \left(25\right) \\\\ &= -25 + \sqrt{2} \cdot 38 \\\\ &= -25 + 38 \sqrt{2} \\\\\end{aligned}\]
The product of \(\sqrt{2} \cdot 38\) and \(25\) is:
\[\begin{aligned}&=\left(\sqrt{2} \cdot 38\right) \cdot \left(25\right) \\\\ &= 950 \sqrt{2} \\\\\end{aligned}\]
The quotient of \(\sqrt{2} \cdot 38\) and \(25\) is:
\[\begin{aligned}&= \frac{\left(\sqrt{2} \cdot 38\right)}{\left(25\right)} \\\\ &= \frac{38 \sqrt{2}}{25} \\\\\end{aligned}\]