2*( $\sqrt{x^(2m-4)}$) * ($\sqrt{-81x^(6-2m)}$)

asked by guest
on Nov 17, 2024 at 2:38 pm



You asked:

Evaluate the expression: \(2 \cdot \sqrt{{x}^{2 m - 4}} \cdot \sqrt{-\left( 81 \cdot {x}^{6 - 2 m} \right)}\)

MathBot Answer:

Evaluated



\(\displaystyle 2 \cdot \sqrt{{x}^{2 m - 4}} \cdot \sqrt{-\left( 81 \cdot {x}^{6 - 2 m} \right)} = 18 \sqrt{- x^{6 - 2 m}} \sqrt{x^{2 m - 4}} \)


Expanded

\[2 \cdot \sqrt{{x}^{2 m - 4}} \cdot \sqrt{-\left( 81 \cdot {x}^{6 - 2 m} \right)} = 18 \sqrt{\frac{x^{2 m}}{x^{4}}} \sqrt{- x^{6} x^{- 2 m}}\]


Factored

\[2 \cdot \sqrt{{x}^{2 m - 4}} \cdot \sqrt{-\left( 81 \cdot {x}^{6 - 2 m} \right)} = 18 \sqrt{\frac{x^{2 m}}{x^{4}}} \sqrt{- x^{6} x^{- 2 m}}\]