1549.73^2+((1549.73*(16+x^2))/(x^2-16))^2+1549.73*((1549.73*(16+x^2))/(x^2-16))^2-2500^2=0

asked by guest
on Nov 18, 2024 at 8:45 am



You asked:

Solve the equation \({1549.73}^{2} + {\left( \frac{1549.73 \cdot \left(16 + {x}^{2}\right)}{{x}^{2} - 16} \right)}^{2} + 1549.73 \cdot {\left( \frac{1549.73 \cdot \left(16 + {x}^{2}\right)}{{x}^{2} - 16} \right)}^{2} - {2500}^{2} = 0\) for the variable \(x\).

MathBot Answer:

The 4 solutions to the equation are: \[\begin{aligned}x &= - 4 \sqrt{\frac{1242726437988439}{1240160880037039} - \frac{9298380 \sqrt{73675697814343}}{1240160880037039}} i \approx -3.873422 i\\x &= 4 \sqrt{\frac{1242726437988439}{1240160880037039} - \frac{9298380 \sqrt{73675697814343}}{1240160880037039}} i \approx 3.873422 i\\x &= - 4 \sqrt{\frac{9298380 \sqrt{73675697814343}}{1240160880037039} + \frac{1242726437988439}{1240160880037039}} i \approx -4.1307144 i\\x &= 4 \sqrt{\frac{9298380 \sqrt{73675697814343}}{1240160880037039} + \frac{1242726437988439}{1240160880037039}} i \approx 4.1307144 i\end{aligned}\]


\(i\) is the imaginary unit, defined as \(i^2 = -1\).