P(x)= 2x^2+x-5

Q(x)=4x^2+3x-x^4+4+2x^3

R(x)=x^3-x

P(x) × R(x)=

asked by guest
on Nov 18, 2024 at 8:32 pm



You asked:

Given the following function definitions: \[\begin{aligned}P\left( x \right) &= 2 \cdot {x}^{2} + x - 5\\ Q\left( x \right) &= 4 \cdot {x}^{2} + 3 x - {x}^{4} + 4 + 2 \cdot {x}^{3}\\ R\left( x \right) &= {x}^{3} - x\end{aligned}\] Evaluate \(P\left( x \right) \cdot R\left( x \right)\).

MathBot Answer:

$$\begin{aligned}P\left( x \right) \cdot R\left( x \right)&=2 x^{5} + x^{4} - 7 x^{3} - x^{2} + 5 x\end{aligned}$$


$$\begin{aligned}P\left( x \right) \cdot R\left( x \right)&=\left(-5 + x + 2 x^{2}\right) \left(- x + x^{3}\right)\\P\left( x \right) \cdot R\left( x \right)&=2 x^{5} + x^{4} - 7 x^{3} - x^{2} + 5 x\\\end{aligned}$$