((2*(15x+8)* $\sqrt{(5x-4)^3}$)/75)*x
You asked:
Evaluate the expression: \(\frac{2 \cdot \left(15 x + 8\right) \cdot \sqrt{{\left( 5 x - 4 \right)}^{3}}}{75} \cdot x\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{2 \cdot \left(15 x + 8\right) \cdot \sqrt{{\left( 5 x - 4 \right)}^{3}}}{75} \cdot x = \frac{2 x \left(15 x + 8\right) \sqrt{\left(5 x - 4\right)^{3}}}{75} \)
Expanded
\[\frac{2 \cdot \left(15 x + 8\right) \cdot \sqrt{{\left( 5 x - 4 \right)}^{3}}}{75} \cdot x = \frac{2 x^{2} \sqrt{125 x^{3} - 300 x^{2} + 240 x - 64}}{5} + \frac{16 x \sqrt{125 x^{3} - 300 x^{2} + 240 x - 64}}{75}\]