Find the value of x when:

2x + y = 13 and x − y = 2

asked by guest
on Jan 20, 2025 at 5:54 am



You asked:

Given the following equations: \[\begin{aligned}2 x + y &= 13\\ x - y &= 2\end{aligned}\] Evaluate \(x\).

MathBot Answer:

The system of linear equations has exactly one solution.

\[x = 5\]


Solve \(2 x + y = 13\) for \(x\). \[x = \frac{13}{2} - \frac{y}{2}\]

Substitute \(\frac{13}{2} - \frac{y}{2}\) for \(x\) in \(x - y = 2\) and simplify. $$\begin{aligned}x - y &= 2 \\ \left(\frac{13}{2} - \frac{y}{2}\right) - y &= 2 \\ y &= 3 \end{aligned}$$

Use substitution of the numerical value of \(y\) to get the values of \(x\). $$\begin{aligned}x &= \frac{13}{2} - \frac{y}{2} \\ x &= - \frac{3}{2} + \frac{13}{2} \\ x &= 5\end{aligned}$$