3.9 x 10^25/4.259 x 10^26

asked by guest
on Sep 19, 2024 at 5:40 pm



You asked:

Evaluate the expression: \(\frac{3.9 \cdot {10}^{25}}{4.259} \cdot {10}^{26}\)

MathBot Answer:

\[\frac{3.9 \cdot {10}^{25}}{4.259} \cdot {10}^{26} = \frac{3900000000000000000000000000000000000000000000000000000}{4259} \approx 915707912655552946701103545433200281756280817093214.36957032167175393284808640525945\]


\[\begin{aligned}\frac{3.9 \cdot {10}^{25}}{4.259} \cdot {10}^{26}& = \left(3 + \frac{9}{10}\right) \cdot 10^{25} \cdot \frac{1}{4 + \frac{259}{1000}} \cdot 10^{26}\\& = \frac{39}{10} \cdot 10^{25} \cdot \frac{1}{4 + \frac{259}{1000}} \cdot 10^{26}\\& = \frac{39}{10} \cdot 10000000000000000000000000 \cdot \frac{1}{4 + \frac{259}{1000}} \cdot 10^{26}\\& = \frac{39}{10} \cdot 10000000000000000000000000 \cdot \frac{1}{\frac{4259}{1000}} \cdot 10^{26}\\& = \frac{39}{10} \cdot 10000000000000000000000000 \cdot \frac{1000}{4259} \cdot 10^{26}\\& = \frac{39}{10} \cdot 10000000000000000000000000 \cdot \frac{1000}{4259} \cdot 100000000000000000000000000\\& = 39000000000000000000000000 \cdot \frac{1000}{4259} \cdot 100000000000000000000000000\\& = \frac{39000000000000000000000000000}{4259} \cdot 100000000000000000000000000\\& = \frac{3900000000000000000000000000000000000000000000000000000}{4259}\end{aligned}\]