(2a+3b)²-2(2a+3b)(3b-a)+(3b-a)²
You asked:
Evaluate the expression: \({\left( 2 a + 3 b \right)}^{2} - 2 \left(2 a + 3 b\right) \left(3 b - a\right) + {\left( 3 b - a \right)}^{2}\)
MathBot Answer:
Evaluated
\(\displaystyle {\left( 2 a + 3 b \right)}^{2} - 2 \left(2 a + 3 b\right) \left(3 b - a\right) + {\left( 3 b - a \right)}^{2} = \left(- a + 3 b\right)^{2} - 2 \left(- a + 3 b\right) \left(2 a + 3 b\right) + \left(2 a + 3 b\right)^{2} \)
Expanded
\[{\left( 2 a + 3 b \right)}^{2} - 2 \left(2 a + 3 b\right) \left(3 b - a\right) + {\left( 3 b - a \right)}^{2} = 9 a^{2}\]
Factored
\[{\left( 2 a + 3 b \right)}^{2} - 2 \left(2 a + 3 b\right) \left(3 b - a\right) + {\left( 3 b - a \right)}^{2} = 9 a^{2}\]