Prove that J_{1/2}(x) = sqrt(2/(pi*alpha)) * Sinx
3525=60
9110=101
1091=101
5050=?
ax-3y=b(x+2y) make x the subject
1226+1226= ...
make x the subject of ax-3y=b(x+2y) make x the subject
i1+i2+i3=0
4i1-i2-i3=-5
4i2-i1-i3=5
2log5 x -log5 y
the sum of progression is 1+x+x²+..=
25*8/1.5
\(\sqrt{\frac{2\cdot 1.5\cdot 10^{-2}\cdot 1.6\cdot 10^{-27}}{1.6\cdot 10^{-19}\cdot 2\cdot 10^{4}}}\)