3$(2)^{-1}$
L:M2×2→M2×2 be the linear transformation defined by L((a,b,c,d))={(a+b,b+c,a+d,b+d)} (a).find the basis for ker L? (b). find the ...
$(2)^{-1}$
[
\frac{x + 4}{3} + \frac{2x + 3}{4} = 7,
]
(2)-1
18a square y and 27x square y square
L:M2×2→M2×2L : M_{2 \times 2} \to M_{2 \times 2}L:M2×2→M2×2 L((abcd))=(a+bb+ca+db+d)L \left( \begin{pmatrix} a & b \\ c & d \end{p...
∂^2y/∂x^2=2*(∂y/∂x)*y
∂''y/∂x''=2*(∂y/∂x)*y