Consider the temperature distribution function 𝑇(𝑥, 𝑦) = 2 − 𝑥
2 − 𝑦
2 on a thin metallic
plate that extends over 0 ≤ 𝑥 ≤ 1, 0 ...
2^(1/4)
$$\int_{1}^{2}((6x^2-4)/(x^3-2x+5)) d\(x)$$
$$\int_{\}^{\}(\(x^2-4x-2)/(x^2-2x)) d(\(x))$$
2^-4
if 3y-x = 4, find the value of y, when x=2
$$\int_{\Box}^{\Box}(\(x^2-4x-2)/(x^2-2x)) d(\(x))$$
0100101101010010010010000101000001001111010110000100110101001100
2x+3y=-1,x-y=2
2x+3y=1
7x+2y=-22