Show that 𝑅
2
(𝑅) is a vector space
$(\sqrt{3-x})^{x}$
($t^{-7}$) $^{3}$
-2k^2+7k+4=0
3x + 7 = 15 - x
3X-1.5=16.5
2x^3 - 2x^3 + x^3 + x^3
y/4 = -4/y -1.5
4X-3=9
how much is 45/25 percent