(3 5\sqrt{5}5 -5 2\sqrt{2}2 )(4 5\sqrt{5}5 +3 2\sqrt{2}2 )
∣1112N−1213N−131∣\begin{vmatrix} 1 & 1 & 1 \\ 2^{N-1} & 2 & 1 \\ 3^{N-1} & 3 & 1 \end{vmatrix}12N−13N−1123111
(3 5\sqrt{5}5 -4 2\sqrt{2}2 )(4 5\sqrt{5}5 +3 2\sqrt{2}2 )
(3 5\sqrt{5}5 -4 2\sqrt{2}2 )(2 5\sqrt{5}5 +2 3\sqrt{3}3 )
calculate and simplify det ( 1 1 1, 2^{N-1} 2 1, 3^{N-1} 3 1)
(3 $\sqrt{\}$ 5 - 5 $\sqrt{\}$2)(4 $\sqrt{\}$5 + 3 $\sqrt{\}$2 )
(d=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}\),
multiply 3402823466385288598117041834845 to get 1
(9,7) (-9,7)
lim 1- cos2x
x->0 x2