Solve the following differential equation using Fourier Transformations:
d
2
y
dx
+ 3
dy
+ 5xy = 0.
((38.095)*(38.095+1)*(2+38.095)*(4+38.095))/(3+38.095)*(10+4*38.095)
Find a particular solution to the recurrence relation an = 9an-1 - 20an-2 + 5n
3p + 2 = 7p - 10
8n+n^2 = 0
𝑓(𝑥) = [(𝑥 − 3)
3
][(𝑥 + 5)
]
if z=acos
3a + 4 = 39 - 2a
7 = 3 ( x – 2
–
3 )