x+y=4
x-y=6
$\frac{20x}{x^{2} + 6x + 3}$=0
$\frac{20x}{x^{2} + 6x + 3}$
log_2(128) ^ (2x - 1) =
Abu travels a distance of 24km from X on a bearing of 60 degrees to Y. He then traveled a distance of 18km to a point Z, which is ...
y=-2x-5,-3x^2+4x-y=8
If
1
8
x
−
2
(
×
)
=
0
18
−12
−(2×8
)=0, then the value of
x is.
\s^{-1}+s'^{-1}=f^{-1}
e^2 * (x − 1) = (x − 1)^ln(x−1)