1*x^5+2*x^4+3*x^3+4*x^2+5*x^1+6*x^0+(1x^8 + 3x^7 +1x^5 +3x^4 +2x^3 +6x^2 +8x^1 +7x^0 + 1x^5 +3x^4 +1x^3 +2x^2 +6x^1 +7x^0) = (1x^8 + 3x^7 +1x^5 +3x^4 +2x^3 +6x^2 +8x^1 +7x^0 + 1*x^5+2*x^4+3*x^3+4*x^2+5*x^1+6*x^0) + 1x^5 +3x^4 +1x^3 +2x^2 +6x^1 +7x^0
You asked:
Solve the equation \(1 {x}^{5} + 2 {x}^{4} + 3 {x}^{3} + 4 {x}^{2} + 5 {x}^{1} + 6 {x}^{0} + 1 {x}^{8} + 3 {x}^{7} + 1 {x}^{5} + 3 {x}^{4} + 2 {x}^{3} + 6 {x}^{2} + 8 {x}^{1} + 7 {x}^{0} + 1 {x}^{5} + 3 {x}^{4} + 1 {x}^{3} + 2 {x}^{2} + 6 {x}^{1} + 7 {x}^{0} = 1 {x}^{8} + 3 {x}^{7} + 1 {x}^{5} + 3 {x}^{4} + 2 {x}^{3} + 6 {x}^{2} + 8 {x}^{1} + 7 {x}^{0} + 1 {x}^{5} + 2 {x}^{4} + 3 {x}^{3} + 4 {x}^{2} + 5 {x}^{1} + 6 {x}^{0} + 1 {x}^{5} + 3 {x}^{4} + 1 {x}^{3} + 2 {x}^{2} + 6 {x}^{1} + 7 {x}^{0}\) for the variable \(x\).
MathBot Answer:
The complex solutions are: \[\mathbb{C}\]