Expand and simplify (x + 5)(x – 3)(x + 4)
You asked:
Simplify the expression: \(\left(x + 5\right) \cdot \left(x - 3\right) \cdot \left(x + 4\right)\)
MathBot Answer:
Simplified:
\[ \left(x + 5\right) \cdot \left(x - 3\right) \cdot \left(x + 4\right) = \left(x - 3\right) \left(x + 4\right) \left(x + 5\right) \]
Expanded:
\[ \left(x + 5\right) \cdot \left(x - 3\right) \cdot \left(x + 4\right) = x^{3} + 6 x^{2} - 7 x - 60 \]
Factored:
\[ \left(x + 5\right) \cdot \left(x - 3\right) \cdot \left(x + 4\right) = \left(x - 3\right) \left(x + 4\right) \left(x + 5\right) \]