y+1=2x
x=0
find y
You asked:
Solve the equations \[\begin{aligned}y + 1 &= 2 x\\x &= 0\end{aligned}\] for the unknown \(y\).
MathBot Answer:
The system of linear equations has exactly one solution.
\[y = -1\]
Solve \(y + 1 = 2 x\) for \(x\). \[x = \frac{y}{2} + \frac{1}{2}\]
Substitute \(\frac{y}{2} + \frac{1}{2}\) for \(x\) in \(x = 0\) and simplify. $$\begin{aligned}x &= 0 \\ \left(\frac{y}{2} + \frac{1}{2}\right) &= 0 \\ y &= -1 \end{aligned}$$
Use substitution of the numerical value of \(y\) to get the values of \(x\). $$\begin{aligned}x &= \frac{y}{2} + \frac{1}{2} \\ x &= - \frac{1}{2} + 1 \cdot \frac{1}{2} \\ x &= 0\end{aligned}$$